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The interaction of electron and the modulated acoustic phonon in free-standing cylindrical nanowire is investigated 
theoretically. The interaction Hamiltonian is derived by taking the divergence of the displacement vector of the acoustic 
phonon. The variational computations for the ground-state energy of the acoustic polaron in cylindrical nanowires are 
numerically performed for different cutoff wave-vectors. The electron and the hole are confirmed to have the self-trapping 
transition in both the AlN and GaN cylindrical nanowire structures. 
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1. Introduction 

 

The advances in nanowire field-effect transistors 

research and application must be accompanied with 

precise modeling of device physics such as electrostatic 

potentials and mobility. Especially, electron mobility is 

important because it is a parameter which associates 

microscopic electron motion with macroscopic phenomena 

such as current-voltage characteristics [1]. The mobility 

will be changed markedly if electron state transforms from 

the quasi-free to the self-trapped. Moreover, many 

physical properties of photoelectric material are also 

influenced by the electron state.  

The self-trapping of an electron is due to its interaction 

with acoustic phonons. Therefore the problems of the 

electron- acoustic phonon interaction (the so called 

acoustic polaron problems) had been maintained interest 

of many scientists in the past decades [2-22]. The polaron 

problem had also gained interest in explaining the high-Tc 

superconductors [23]. Recently, the polaron problem had 

been studied to describe impurities of lithium atoms in 

Bose-Einstein ultracold quantum gases condensate of 

sodium atoms [24]. So that it is meaningful to judge the 

possibility of the self-trapping of electron in nanowire 

systems. 

Theoretical calculations for the ground-state energy of 

the acoustic polaron as a function of the electron- phonon 

(e-p) coupling strength have leaded to a discontinuous 

transition of polaron state from quasi-free to self-trapped
 

[4-10]. As for the e-p coupling effect, it will be 

substantially enhanced in confined structures, such as 

nanowire systems. So the self-trapping transition of 

polaron would be easier to realize in confined structures.  

It is determined in our previous works
 
[14] that the 

self-trapping transition is expected to occur in the 

cylindrical quantum wire systems of alkali halides and 

wide-band-gap semiconductors. However, the e-p 

coupling Hamiltonian was derived by bulk phonon mode 

rather than confined phonon mode, the treatment left 

something to be desired [14].  

Various technigues (e.g., Feynman approximation, 

Gaussian approximation and the approximation of Shoji 

and Tokuda, etc) that valid over the whole e-p coupling 

range and provied an upper bound to the exact acoustical 

polaron ground-state energy had been summarized in 

Ref.[10]. The Feynman path-integral approach is generally 

considered to be most accurate [10]. The Huybrechts 

variational approach has relatively simple features. It had 

been identified in previous work of the first author of 

present paper that the Huybrechts variational approach and 

Feynman path-integral approach are comparable in terms 

of accuracy [25]. So that the ground-state energy of the 

acoustic polaron in free-standing cylindrical nanowires 

will also be performed following the Huybrechts-like 

variational treatment in Sec. 3. 

In this work, a new Hamiltonian describing the 

deformation potential interaction between the electron and 

the modulated acoustic phonon will be derived. The self-

trapping transition of the acoustic polaron in free-standing 

cylindrical nanowires will be discussed. 

 

 

2. The e-p interaction Hamiltonian 

 

The electron and the modulated acoustic phonon 

interaction Hamiltonian can be obtained as following form 

[6]:  

                        
intH D S  ,                               (1) 

where D is the deformation potential constant and S  the 

displacement vector of the acoustic phonon.  

In an infinite length cylindrical nanowire in the z 

direction with radius R, the only longitudinal models of 
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confined acoustic phonons are considered. The 

displacements can be taken as the form [26]:  

 
( )

( , ) ( )p zi m q z t

q q

q

S r t C e u r
  

 .              (2) 

Where 
qC  is a constant, 

pm is the phonon azimuthal 

quantum number related to rotational symmetry, 
zq is a 

wave vector along the wire, ω is an angular frequency, and 

the three-dimensional vector ( )qu r represents the radial 

dependence of the normal mode.  

The vector ( )qu r must satisfy the following 

normalization integral [26] 

             
,

0
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Where 
zL and R denote the length and radius of the 

nanowire, respectively. The ( )r  is the position-

dependent mass density of the nanowire. 

In a free-standing nanowire, general solution of the 

vector ( )qu r in the cylindrical coordinate is given by [1] 
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Where 
pmJ and 

pmJ  are Bessel function of the first kind 

with order pm and its first derivative. 

Consider the isotropic system, 0pm  , 
z lq q . By 

using the Eq.(4), the interaction Hamiltonian becomes 

2

1 0

2
( ) . .ac

int q

q

D
H a A q J qr h c

N
                (5) 

Here, N is number of the unit cell. The linear dispersion, ω 

= cq, presents the relation of the acoustic phonon 

frequency with a finite wave-vector q, c is the sound 

velocity.  

The e-p interaction Hamiltonian in Eq.(5) can be 

written as the following 

 

                 
† †( )int q q q q

q

H G a G a  .                        (6) 

where the e-p coupling function is given by 

    
2

1 0

2
( )q

D
G A q J qr

N
  .                      (7) 

Consider the electron in the nanowire is confined in 

radial plane and free in axial direction. The electron and 

the modulated acoustic phonon interaction Hamiltonian in 

the free-standing cylindrical nanowire is then written as 
2

† †( )
2

q q q q q q

q q

p
H a a G a G a

m
      .     (8) 

where 2 / 2p m denotes the kinetic energy of the electron. 

The acoustic phonon contribution is given by 
†

q q

q

a a . 

 

 

3. Variational treatment 

 

Now we start from the Hamiltonian of (8) to calculate 

the ground-state energy of the acoustic polaron in 

cylindrical nanowires, by using a Huybrechts-like 

variational approach [27] 

Carry out a unitary transformation firstly 

                   †

1 exp q q

q

U ia q za a
 

   
 

                     (9) 

where a is a variational parameter，which will take the 

value of 0 in the strong coupling limit and 1 in the weak 

coupling case. Doing so, the Hamiltonian turns into 
2

† †

1

1

2
q q q q
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       exp 1 . .q q

q

G a i a q z h c              (10) 

Then introducing the linear combination operators of 

the position and momentum of the electron by the 

following relations 
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where †

zb  and 
zb  present creation and annihilation 

operator, respectively.   is another variational parameter. 

Inserting (11a) and (11b) into (10) and performing the 

second unitary transformation 

 

                          

q
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2 exp ,                   (12)                                          

the Hamiltonian finally becomes as the following form  
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The multi-phonon processes contribute less to the 

polaronic energy in above, which have been omitted. 
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The displacement amplitude in the second unitary 

transformation is determined as 

 

           
 
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       (14) 

by the condition of diagonalization of the vital important 

part of H2. 

The ground-state energy can be calculated by 

averaging Hamiltonian of Eq.(13) on the zero-phonon state 

0 of acoustic polaron, for which one have 

 

0 0 0z qb a  . 

By using the standard treatments, the variational 

energy of the polaronic ground-state can be obtained as 

following 

 

 
2

0 1
4

E a


   

 
 

 
0

2 2

2 2

0 2 20 0
1

exp 1 / 2
16

( ) 1 / 2

R q a q
q J qr dqdr

rJ qr a q






  
 




   (15) 

The α in above equation is e-p coupling constant and given 

by 

                                    
2 2

38

D m

c



 .                            (16) 

Here ρ is the mass density of the crystal. 

 

 

4. Numerical results and discussions 

 

The theoretical computations for the ground-state 

energy of the acoustic polaron, as functions of α for three 

cutoff wave-vector q0 of 40, 60 and 80, in free-standing 

cylindrical nanowires with the radius R of 0.4 and 0.6, are 

numerically performed by using Eq.(15). To compare with 

the earlier results, we have also expressed the energy in 

units of mc
2
 and the phonon vector in units of mc/ħ in the 

calculations.  

As be seen in Fig. 1(a) (q0 = 40) a knee in the ground 

state energy curve with respect to α at αc ≈ 0.00052, which 

is called the “phase transition” critical point, where the 

polaron state transforms from the quasi-free to the self-

trapped [3,4,10,11,14]. In terms of q0 = 60 and 80, one can 

find the critical points are at αc ≈ 0.0004 and 0.0003 in Fig. 

1(b) and (c). The critical points can be found more clearly 

in the derivatives of the acoustic polaron for their 

discontinuous behaviors. It is obviously that the critical 

point αc shifts toward the weaker e-p coupling with 

increasing the cutoff wave-vector q0. The character of the 

critical coupling constant varying with the cutoff wave-

vector q0 is corresponding to the previous papers [10,14]. 

Fig. 2 exhibits the results of ground-state energies and 

derivatives of the acoustic polarons in cylindrical 

nanowire for R = 0.6. One can find in Fig. 2 that the 

critical coupling constants are around 0.00105, 0.00072 

and 0.00054, for q0 = 40, 60 and 80, respectively. It is also 

found that the position of the critical point is sensitive to 

the cutoff wave-vector q0 and shifts also toward the 

direction of smaller e-p coupling with the increasing cutoff 

wave-vector. The character of the critical coupling 

constant varying with the cutoff wave-vector q0 is 

consistent with the previous studies [10,14]. 
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Fig. 1. Ground-state energies and their derivatives of the 

acoustic polarons in cylindrical nanowire with the radius 

R = 0.4, as functions of  the e-p  coupling constant  α  for  

   (a) q0= 40, (b) q0= 60 and (c) q0= 80, respectively. 
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Fig. 2. Ground-state energies and their derivatives of the 

acoustic polarons in cylindrical nanowire with the radius 

R = 0.6,  as  functions of  the e-p coupling constant α  for  

    (a) q0= 40, (b) q0 = 60 and (c) q0 = 80, respectively. 

 

As be seen in the above figures the critical values of 

the e-p coupling constant increase with the increasing 

radius of the cylindrical nanowire. For example, when the 

cutoff wave-vector q0 equals to 40, the critical coupling 

constant, αc, is around 0.00052 for the radius is 0.4 (Fig. 1), 

wherereas αc ≈ 0.00105, when the radius is 0.6 (Fig. 2). 

Which we thought the e-p coupling strength weakened 

with the increasing radius of cylindrical nanowire. 

Additionally, we also checked the products of αc by 

q0 of the acoustic polarons in cylindrical nanowires with 

different radius. The αcq0 had been used as a criterion for 

the self-trapping transition qualitatively. It is obviously 

that the αcq0 for different values of cutoff wave-vectors 
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almost tend to a given value of 0.024, when the radius of 

the cylindrical nanowire is 0.4. Similarly result had also 

been obtained in the cylindrical nanowires with radius of 

0.6. Where the products of αcq0 are all close to 0.04. 

Therefore, αcq0 can also be used as a qualitative criterion 

for the presence of the self-trapping transition of the 

acoustic polaron in cylindrical nanowires. Acoustic 

polaron in cylindrical nanowire systems can be self-

trapped if αq0 (determined by the material parameters) is 

larger than the αcq0 [14].  

0 5 10 15 20 25

0

1

2

3

 

 

¡ø

*

 

 

¡ø The critical point of 1D

 *  The critical point of 2D

 ¡ðThe critical point of 3D

R


cq 0

The calculated value

   ¡ª    The fitting curve

            q
0
 = 60

 

Fig. 3. The products of  αc by q0 of the acoustic polarons 

 as the function of R in cylindrical nanowires. 

 

Now we use the criterion of the αcq0 to judge the 

possibility of self-trapping transition for the acoustic 

polaron in real cylindrical nanowire materials. First we 

consider the semiconductors of GaN and AlN. In our 

previous work, it was indicated that the self-trapping 

transition of the acoustic polaron is impossible to occur for 

these two materials in 3D case and for GaN in 2D case 
[25]

. 

In present work, the two values of αq0 (0.24 and 0.57 for 

GaN and AlN, respectively) are all larger than the αcq0, so 

that the acoustic poalrons in free-standing cylindrical 

nanowire of these two semiconductor materials can be 

self-trapped. 

Fig. 3 exhibits the relation of αcq0 and the cylindrical 

nanowire radius owing to the e-p coupling strength varies 

with it’s confined dgree. One can find the criterion (αcq0) 

for the self-trapping transition of the acoustic polaron will 

reach to 0.6 (self-trapping criterion of the 2D acoustic 

polaron in Ref. 27) in case of cylindrical nanowire with a 

radius of 5.2. The e-p coupling weakend with the 

decreasing confined degree is verified again. The 

increasing αcq0 will reach the self-trapping criterion of 3D 

acoustic polaron, i.e. 2.6
 
[25], when the radius of the wire 

increases to 20.6. Where the confined effect has vanished. 

It can be taken as a result that the 20.6 times of ħ/mc (has 

an order of 100 Å in this paper) is greatly exceeding the 

general radius size of nanowires.  

 

5.  Conclusion 
 

Considering the trapped electron influences 

luminescence properties of photoelectric material. The 

self-trapping transition of acoustic polaron in free-standing 

cylindrical nanowires was reconsidered by using a new 

Hamiltonian of deformation potential interaction between 

the electron and the modulated acoustic phonon. It can be 

concluded that the electrons and holes in both GaN and 

AlN cylindrical nanowires with a general radius are 

expected to have the self-trapping transition. 
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